What must be added to polynomial f(x) = x4 + 2x2 – 2x2 + x – 1 so that resulting
polynomial is exactly divisible by x2 + 2x – 3?
Answers
Answered by
1
Step-by-step explanation:
Let P(x)=X^4+2X^3–2X^2+X-1
G(x)=X^2+2X-3
=>X^2+(3–1)X-3
=>X^2+3X-X-3
=>X(X+3)-1(X+3)
=>(X+3)(X-1)
If ax+b added to P(x), then P(x) must be divisible by G(x)
Therefore(x+3) and(x-1) will be the factor of
X^4+2X^3–2X^2+X-1+aX+b
=>(-3)^4+2(-3)^3–2(-3)^2+(-3)-1+a(-3)+b
=>81–54–18–3–1–3a+b=0.
=>5–3a+b=0…….…..…(1)
(1)^4+2(1)^3–2(1)^2+1–1+a+b=0
1+2–2+1–1+a+b=0
1+a+b=0……………(2)
Subtracting(1) from(2)
-4+4a=0
=>a=1
b=-2
So x-2 must be added
Similar questions
Chemistry,
1 month ago
Physics,
1 month ago
Science,
1 month ago
Social Sciences,
2 months ago
Chemistry,
9 months ago
India Languages,
9 months ago
English,
9 months ago