Math, asked by mulasharlavan, 1 year ago

What must be added to x 3 - 3x 2 - 12x + 19 so that the result is exactly divisible by x 2 + x -6 ?

Answers

Answered by anmol28
39
x²+x-6
x²+3x-2x-6
x(x+3)-2(x+3)
(x-2)(x+3)
now take (x-2)
x-2=0
x=2
p(2)=x³-3x²-12x+19
(2)³-3(2)²-12(2)+19
8-12-24+19
27-36
-9
therefore -9 must be added to be exactly divisible.
Answered by wifilethbridge
4

Answer:

x^2+x+2x-1                

Step-by-step explanation:

Dividend = x^3 - 3x^2 - 12x + 19

Divisor = x^2+x-6

We know that

Dividend= (Divisor \times quotient)+Remainder

x^3 - 3x^2 - 12x + 19= (x^2+x-6 \times x)+(-4x^2-6x+19)

x^3 - 3x^2 - 12x + 19= (x^2+x-6 \times x-4)+(-2x-5)

So, quotient = x-4

Remainder = -2x-5

Polynomial should be added to Dividend = Divisor - Remainder

                                                                   = x^2+x-6-(-2x-5)    

                                                                   = x^2+x-6+2x+5                                                                                                                                                                                                      

                                                                   = x^2+x+2x-1                

So, x^2+x+2x-1 must be added to  x^3 - 3x^2 - 12x + 19 so that the result is exactly divisible by x^2+x-6                                                                                                                                                                          

Similar questions