Math, asked by Nishchay2004, 1 year ago

What must be added to x³-3x²-12x+19 so that the result is exactly divisible by x²+x-6 ?


deepu786: x-4

Answers

Answered by siddhartharao77
14
Given f(x) = x^3 - 3x^2 - 12x + 19.

Given g(x) = x^2 + x - 6.

Divide f(x) by g(x).



x^2 + x - 6) x^3 - 3x^2 - 12x + 19

                   x^3 + x^2 - 6x

                   -----------------------------

                           -4x^2 - 6x + 19

                           -4x^2 - 4x + 24

                    -----------------------------

                                        -2x - 5

                                        

Here, remainder = -2x - 5.


Therefore (-2x - 5) must be added to x^3 - 3x^2 - 12x + 19, so that the result is divisible by x^2 + x - 6.




Hope this helps!

siddhartharao77: :-)
Answered by mgmaluminium
1

Given f(x) = x^3 - 3x^2 - 12x + 19.

Given g(x) = x^2 + x - 6.

Divide f(x) by g(x).

x^2 + x - 6) x^3 - 3x^2 - 12x + 19

x^3 + x^2 - 6x

-4x^2 - 6x + 19

-4x^2 - 4x + 24

-2x - 5

Here, remainder = -2x - 5.

Therefore (-2x - 5) must be added to x^3 - 3x^2 - 12x + 19, so that the result is divisible by x^2 + x - 6.

Similar questions