Math, asked by MizCandyClause, 6 months ago

what must be subtracted from (4x⁴-2x³-6x²+2x+6)so that the result is exactly divisible by (2x²+x-1) ?​

Answers

Answered by llAloneSameerll
1

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\blue{Solution:-}}}}}

when the given polynomial is divided by a quadratic polynomial, then the remainder is a linear expression, say (ax+b).

let \: p(x) =(  {4x}^{4}  -  {2x}^{3}  -  {6x}^{2}  + 2x + 6) - (ax + b) \: and \: g(x) =  {2x}^{2}  + x - 1. \\

{\blue{\sf\underline{Then,}}}

p(x) =  {4x}^{4}  -  {2x}^{3}  -  {6x}^{2}  + (2 - a)x + (6 - b) \\

and \: g(x) = ( {2x}^{2}  + x - 1) = ( {2x}^{2}  + 2x - x - 1) = 2x(x + 1) - (x + 1) \\  = (x + 1)(2x - 1).

Now,p(x) will be divisible by g(x) only when it is divisible by (x+1) as well as by (2x-1).

now \: (x + 1 = 0 = x =  - 1) \: and \: (2x - 1 = 0 = 2x = 1 = x =  \frac{1}{2} ). \\

By factor theorem, p(x) will be divisible by g (x),if p (-1)=0 and p( \frac{1}{2} ) = 0

p( - 1) = 0</em><em> </em><em>⇒</em><em> 4 \times  {( - 1)}^{4}  - 2 \times  { ( - 1)}^{3}  - 6 \times  {( - 1)}^{2}  + (2 - a) \times ( - 1) + 6 - b = 0 \\

 </em><em>⇒</em><em> 4 + 2 - 6 - 2 + a + 6 - b = 0 = a - b =  - 4 \:  \:  \:  \:  \:  \:  \:..... (i)  \\

p( \frac{1}{2} ) = 0 </em><em>⇒</em><em> 4 {( \frac{1}{2}) }^{4}  - 2 \times  {(  \frac{1}{2} )}^{3}  - 6 \times  {( \frac{1}{2} )}^{2}  + 2 - a) \times  \frac{1}{2}  + (6 - b) = 0 \\  </em><em>⇒</em><em> (4 \times  \frac{1}{16} ) - (2 \times  \frac{1}{8} ) - (6 \times  \frac{1}{4} ) + 1 -  \frac{a}{2}  + 6 - b = 0 \\  </em><em>⇒</em><em>  \frac{1}{4}  -  \frac{1}{4}  -  \frac{3}{2}  + 1 -  \frac{a}{2}  + 6 - b = 0 </em><em>⇒</em><em>  \frac{a}{2}  + b =  \frac{11}{2} \\ </em><em>⇒</em><em>a + 2b = 11. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........(ii)

on solving (i) and (ii), we get a = 1 and b = 5.

hence, the required expression to be subtracted is (x+5)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions