Math, asked by danoct2004, 1 year ago

what must be subtracted from 4x4 - 2x3 - 6x2 + x - 5 so that the resulting polynomial is exactly divisible by 2x2 +3x-2

Answers

Answered by AnswerStation
106
Divide polynomial by the divisor given.
The remainder you get should be subtracted from polynomial so that the new polynomial obtained is divisible by 2x2 + 3x - 2
Attachments:

AnswerStation: plzz mark brainliest if you like my answrr.
Answered by smithasijotsl
0

Answer:

-22x+5 should be subtracted so that  4x⁴-2x³-6x²+x-5  is exactly divisible by 2x²+3x-2

Step-by-step explanation:

To find,

The expression to be subtracted from 4x⁴-2x³-6x²+x-5  so that the resulting polynomial is exactly divisible by 2x²+3x-2

Let f(x) be 4x⁴-2x³-6x²+x-5  and g(x) be 2x²+3x-2

First, let us divide the polynomial f(x) by g(x)

                                        2x²-4x+5

                                     __________________

                  2x²+3x-2   I   4x⁴-2x³-6x²+x-5

                                        4x⁴+6x³-x²

                                     __________________

                                       -8x³-2x²+x-5

                                       -8x³-12x²+8x

                                    ___________________

                                              +10x² - 7x-5

                                              +10x² +15x-10

                                    ___________________

                                                        -22x+5

Then by division algorithm, we have,

Dividend = Quotient x Divisor + Remainder

f(x) = g(x) x Quotient + Remainder.

f(x) - Remainder = g(x) x Quotient.

f(x) - Remainder  is a multiple of g(x)

f(x) is exactly divided by g(x), when the remainder is subtracted from f(x)

Here, dividend = f(x)  = 4x⁴-2x³-6x²+x-5

Quotient = g(x) =  2x²-4x+5

Divisor = 2x²+3x-2

Remainder = -22x+5

Then we have f(x) - ( -22x+5) is exactly divisible by g(x)

-22x+5 should be subtracted so that  4x⁴-2x³-6x²+x-5  is exactly divisible by 2x²+3x-2

#SPJ3

Similar questions