What must be subtracted from f(x) = 3x4 + 30x3 – 62x2 + 17x – 10 so that resulting polynomial is divisible by g(x) = x2 – x + 1?
Answers
Answered by
9
Answer:
-48x + 22
Step-by-step explanation:
f(x) = 3x⁴ + 30x³ - 62x² + 17x - 10
g(x) = x² - x + 1
q(x) = ax² + bx + c
r(x) = dx + e
f(x) - r(x) = g(x) q(x)
g(x) q(x)
= (x² - x + 1)(ax² + bx + c)
= ax⁴ + x³(b-a) + x²(c + a - b) + x(b -c) + c
comparing with
3x⁴ + 30x³ - 62x² + 17x - 10 - (dx + e)
= 3x⁴ + 30x³ - 62x² + (17-d)x - (10 + e)
a = 3
b-a = 30 => b = 33
c + a - b = -62 => c -30 = -62 => c = -32
b-c = 17-d => 33 -(-32) = 17 - d => d = -48
c = -(10 + e) => -32 = -(10 + e) => e = 22
Remainder = -48x + 22
f(x) - r(x)
3x⁴ + 30x³ - 62x² + 17x - 10 -(-48x + 22 )
= 3x⁴ + 30x³ - 62x² + 65x - 32
= x²(3x² + 33x -32) -x(3x² + 33x -32) + 1(3x² + 33x -32)
= (x² - x + 1)(3x² + 33x -32)
= g(x) q(x)
Similar questions
Math,
6 months ago
Math,
6 months ago
English,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago