Physics, asked by hritikd2420, 11 months ago

What must be the stress (F//A) in a stretched wire of a material whose Young's modulus is Y for the speed of lonitudinal waves equal to 30 times the speed of transverese waves?

Answers

Answered by mad210218
3

Given ;

Young's modulus of material = γ

Speed of longitudinal wave = 30(Speed of transverse wave)

V_L = 30\times V_T                                                 (equation 1)

To find ;

Stress in a streched wire = \frac{F}{A}

Solution ;

We know that Young's modulus

γ = \frac{\textbf{Stress}}{\textbf{Strain}}                                                         (equation 2)

Stress = \frac{\textbf{F}}{\textbf{A}}                                                       (equation 3)

Longitudinal  speed   V_L =  \sqrt{\frac{\gamma}{\rho}}

where  γ = Young's modulus

          ρ = Density

transverse speed V_T =  \sqrt{\frac{F}{\mu}}

where F = Force

          μ = Mass per unit length = ρA                        (equation 4)

Given that

V_L = 30\times V_T

so   \sqrt{\frac{\gamma}{\rho}} = 30\times \sqrt{\frac{F}{\mu}}                                             (Squaring both sides)

\frac{\gamma}{\rho}}= 900\times  \frac{F}{\mu}                                                          (putting equation 4 here)

\frac{\gamma}{\rho}}= 900\times  \frac{F}{\rho \times A}                                                      (cancelling ρ on both sides)

γ = 900 \times \frac{F}{A}                                                               (by equation 3)

So,

Stress = \frac{\gamma}{900}          

Similar questions