what r the 10 consecutive odd numbers whose sum is 1200
Answers
Given:-
- Sum of 10 consecutive odd numbers = 1200.
To Find:-
- 10 consecutive odd numbers.
Solution:-
Let ten odd numbers be x , x+2 , x+4 , x+6 , x+8 , x+10 , x+12 , x+14 , x+16 , x+18.
According to question,
x + x+2 + x+4 + x+6 + x+8 + x+10 + x+12 + x+14 + x+16 + x+18 = 1200
⇒ 10x + 90 = 1200
⇒ 10x = 1200 - 90
⇒ x = 1110/10
⇒ x = 111
So, the 10 consecutive odd numbers whose sum is 1200 are :- 111 , 113 , 115 , 117 , 119 , 121 , 123 , 125 , 127 , 129.
━━━━━━━━━━━━━━━━━━
Answer:
Explanation:Given:-
Sum of 10 consecutive odd numbers = 1200.
To Find:-
10 consecutive odd numbers.
Solution:-
Let ten odd numbers be x , x+2 , x+4 , x+6 , x+8 , x+10 , x+12 , x+14 , x+16 , x+18.
According to question,
x + x+2 + x+4 + x+6 + x+8 + x+10 + x+12 + x+14 + x+16 + x+18 = 1200
⇒ 10x + 90 = 1200
⇒ 10x = 1200 - 90
⇒ x = 1110/10
⇒ x = 111
So the 10 consecutive odd numbers whose sum is 1200 are :- 111 , 113 , 115 , 117 , 119 , 121 , 123 , 125 , 127 , 129