Math, asked by pragna37, 9 months ago

what's the answer for this.. kindly help me with this​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

Given,

 \frac{{1 -  \sqrt{3} } }{1 +  \sqrt{3} }   = a + b

Rationalizing the denominator in lhs,

 =  >  \frac{(1 -  \sqrt{3} )(1 -  \sqrt{3} )}{(1 +  \sqrt{3} )(1 -  \sqrt{3} )}  = a + b

  =  > \frac{ {(1 -  \sqrt{3}) }^{2} }{1 - 3}  = a + b

 =  >  \frac{1 + 3 - 2 \sqrt{3} }{ - 2} = a + b

 =  >  \frac{ - 2( \sqrt{3} - 2) }{ - 2}  = a + b

 =  >  \sqrt{3}  + ( - 2) = a + b \:  \: or \:  \: ( - 2) +  \sqrt{3}  = a + b

Hence either a=√3 and b=(-2) or a=(-2) and b=√3

Similar questions