Math, asked by rathoreaditi2008, 5 hours ago

what's the answer please ​

Attachments:

Answers

Answered by IamIronMan0
7

Answer:

Use the formula

 \boxed{ \red{ {x}^{2} -  {y}^{2}  = (x + y)(x - y) }}

(a)

p =  \frac{59 {}^{2}  - 51 {}^{2} }{8}   \\  \\ =  \frac{(59 + 51)(59 - 51)}{8}  \\  \\  =  \frac{110 \times 8}{8}  = 110

(b)

p =  \frac{ {76}^{2} - 67 {}^{2}  }{143}  \\  \\  =  \frac{(76 + 67)(76 - 67)}{143}  \\  \\  =  \frac{143 \times 6}{143}  =6

(c)

p =  \frac{(3a + b) {}^{2}  - (3a - b) {}^{2} }{ab}  \\  \\  =  \frac{(3a + b + 3a - b)(3a + b - 3a + b)}{ab }  \\  \\  =  \frac{6a \times 2b}{ab}  =  \frac{12ab}{ab}  = 12

(d)

441 -  {p}^{2}  =  {21}^{2}  -  {17}^{2}  \\  \\  \implies \:  {21}^{2}  -  {p}^{2}  =  {21}^{2}  -  {17}^{2}  \\  \\   \implies {p}^{2}   -  {17}^{2}  +  21^{2}  -  {21}^{2}  = 0 \\  \\  \implies \: (p  + 17)(p - 17) = 0 \\  \\  \implies \: p = 17 \ \:  \:  \: or\:  \:  - 17

Answered by Rudranil420
8

Answer:

\qquad\qquad\underline{\textsf{\textbf{ \color{magenta}{Solution\:completed}  }}}

Solution :-

[Please refer that attachment for your answer]

☞Some Basic Algebraic Identities-

★ (a + b)² = a² + 2ab + b²

★ (a − b)² = a² − 2ab + b²

★ (a + b) (a – b) = a² – b²

★ (x + a) (x + b) = x² + (a + b)x + ab

★ (x + a) (x – b) = x² + (a – b)x – ab

★ (x – a) (x + b) = x² + (b – a)x – ab

★ (x – a) (x – b) = x² – (a + b)x + ab

★ (a + b)³ = a³ + b³ + 3ab (a + b)

★ (a – b)³ = a³ – b³ – 3ab (a – b)

HOPE IT HELPS :)

Attachments:
Similar questions