what's the difference of balanced forces and action-reaction forces
Answers
Explanation:
\frac{ \sqrt{3} }{2} \: }} \\ \end{gathered}
cos
6
π
=
2
3
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
T−eq
sinx=0
cosx=0
tanx=0
sinx=siny
cosx=cosy
tanx=tany
Answer:
make me a brainleist
Explanation:
Balanced forces are equal and opposite forces that act on the same object. That's why they cancel out. Action-reaction forces are equal and opposite forces that act on different objects, so they don't cancel out.