what's the formula for (a+b+c) the whole cube
Answers
Answered by
3
Hey there!!
Down here⏬
The expansion of identity
(a + b + c)^3 = a^3 + b^3 + c^3 + 3 (a+b) (b+c) (a+c)
PROOF
(a + b + c)^3 = a^3 + (b^3 + c^3 +3bc (b+c)) + 3a (b+c) (a+b+c)
(a+b+c)^3 - a^3 - b^3 - c^3 = 3bc (b+c) + 3a (b+c) (a+b+c)
= 3 (b+c) [ bc + a(a+b+c)]
= 3 (b+c) [ bc + a^2 + ab + ac]
= 3 (b+c) [ (bc + ab) + (a^2 + ac)]
= 3 (b+c) [b (a+c) + a (a+c)]
= 3 (b+c)(a+c)(a+b)
Hope it helps. <3
Down here⏬
The expansion of identity
(a + b + c)^3 = a^3 + b^3 + c^3 + 3 (a+b) (b+c) (a+c)
PROOF
(a + b + c)^3 = a^3 + (b^3 + c^3 +3bc (b+c)) + 3a (b+c) (a+b+c)
(a+b+c)^3 - a^3 - b^3 - c^3 = 3bc (b+c) + 3a (b+c) (a+b+c)
= 3 (b+c) [ bc + a(a+b+c)]
= 3 (b+c) [ bc + a^2 + ab + ac]
= 3 (b+c) [ (bc + ab) + (a^2 + ac)]
= 3 (b+c) [b (a+c) + a (a+c)]
= 3 (b+c)(a+c)(a+b)
Hope it helps. <3
Similar questions