Math, asked by figureitout, 10 months ago

What's the product of (sin a +cos a)(sin a +cos a)?

Answers

Answered by mysticd
2

 \red{ Product \:of \:(sin A +cos A)(sin A +cos A) } \\= ( SinA + cos A )^{2} \\= sin^{2} A + cos^{2} A + 2sinAcosA \\\green {= 1 + 2sinAcosA}

/* By Algebraic Identity */

 \boxed { \pink { sin^{2} A + cos^{2} A = 1 }}

\blue { = 1 + sin2A }

 \boxed { \orange { Since, 2sinAcosA = sin 2A }}

Therefore.,

 \red{ Product \:of \:(sin A +cos A)(sin A +cos A) }\\\green { = 1 + 2sinAcosA}

 \green { = 1 + sin2A }

•••♪

Answered by Anonymous
0

Answer:

1 + Sin 2a

Step-by-step explanation:

(sin a + cos a)(sin a + cos a)

= (sin a + cos a)^2

= sin^2 a + cos^2 a + 2(cos a)(sin a)

= 1 + sin 2a

Predefined results used above:

  • sin^2 a + cos^2 a = 1
  • 2(sin a)(cos a) = sin 2a

Please mark my answer as Brainliest!

Similar questions