Math, asked by pickleberry, 5 months ago

what's the right answer ​

Attachments:

Answers

Answered by Anonymous
9

Given :

  • Evaluate  \sf{∫ x^{-11} ( 1 + x^{4})^-½\:dx}

To find :

  • Evaluate  \sf{∫ x^{-11} ( 1 + x^{4})^-½\:dx}

According to the question :

Here  \sf\frac{m + 1}{n} + p =  \sf\frac{[ -11 + 1}{4}]  \sf[ \frac{1}{2}] = -3

We are substituting ( 1 + x⁴ ) = t² x⁴,

then 1 + \sf\frac{1}{x⁴} = t² and \sf\frac{-4}{x^5} DC = 2t dt

 I = \sf{∫( \frac{dx}{x^11 ( 1 + x^4 )})^½}

 I = \sf{∫( \frac{dx}{x^{11} × x² ( 1 + ( \frac{1}{x^4})})^½}

 I = \sf{∫( \frac{dx}{x^{13} ( 1 + ( \frac{1}{x^4})})^½}

 \sf{-¼ ∫( \frac{2t\:dt}{x^8\:t}})

 \sf{-½ ∫( t² - t )²\:dt}

 \sf{-½ ∫( t^{4} - 2t² + 1 )\:dt}

 \sf{-½ ∫[( \frac{t^{5}}{5}) - ( \frac{2t³}{3}) + \:t}\:] +\:c

\pink \sf{t = \sqrt{1 + ( \frac{1}{x^4})}}

So, It's Done !!

Similar questions