Math, asked by jasssi49, 1 year ago

what should be added to -11/5 to get 7/20​

Answers

Answered by iTzMiSsTwinKle
34

\huge{\boxed{\sf{SOLUTION :}}}

Let,

Let,The number be x

According to question,

 \frac{ - 11}{5}  + x =  \frac{7}{20}

x =  \frac{7}{20}  +  \frac{11}{5}

L.C.M of 20 and 5 is 20

x =  \frac{7 + 44}{20}

x =  \frac{51}{20}

Hence,

Hence,The required answer is 51/20

Answered by BrainlyConqueror0901
64

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{x=\frac{51}{20}}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

Let the number be x

according \: to \: given \: question \\   \frac{ - 11}{5}  + x =  \frac{7}{20}  \\  take \: lcm \: in \: lhs \\ = )  \frac{ - 11 + 5x}{5}  =  \frac{7}{20}  \\  cross \: multiply \: the \: fraction \\\\  = )20( - 11 + 5x) = 35 \\  = ) - 11 + 5x =  \frac{35}{20}  \\  = ) - 11 + 5x =  \frac{7}{4}  \\  = )5x =  \frac{7}{4}  +  \frac{11}{1}  \\  taking \: lcm \: in \: rhs \\\\  = )5x =  \frac{7 + 44}{4}  \\ = )5x =  \frac{51}{4}  \\  = )x =  \frac{51}{5 \times 4}  \\  = )x =  \frac{51}{20}  \\  \\ verification \\ solve \: lhs \: by \: putting \: value \: of \: x \\   = )\frac{ - 11}{5}  +  \frac{51}{20}  \\  = ) \frac{ - 11 \times 4 + 51}{20}  \\  = ) \frac{ - 44 + 51}{20}  \\  = ) \frac{7}{20}  \\  \:  \:  \:  \: \:  \:  \:  \:  rhs \: proved

\huge{\red{\boxed{\boxed{\green{\sf{x=\frac{51}{20}}}}}}}

_________________________________________

Similar questions