Math, asked by dikkalarekha1123, 1 month ago

what should be added to (z²+24z+120)so that the resulting polynomial is exactly divisible by (z+12)​

Answers

Answered by Anonymous
83

Given p(x) = \rm z^{2} + 24z + 120

g(x) = \rm z+12

By long division method, we get.

\rm z + 12 \sqrt{ {z}^{2}  + 24z + 120 }  \\   {z}^{2}  ± 12z \\ -------- \\  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  12z + 120 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  12z ± 144 \\  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -(+) 24 \\  -  -  -  -  -  -  -  -  \\

Therefore, 24 should be added to \rm z{2} + 24z + 120 so that it exactly get's divisible by \rm (z+12)

‏‏‎ ‎

‏‏‎ ‎

Note :

if the answer is not clear, then refer to the attachment!!

Attachments:
Similar questions