Physics, asked by Rohan1117, 1 year ago

what should be the answer for this?
give explanation.​

Attachments:

Answers

Answered by IamIronMan0
1

Answer:

d

Use Snell's law

 1. \sin( \theta)  = \mu. \sin(r _1)  \\  \\  \sin(r _1) =  \frac{ \sin( \theta) }{ \mu}  -  -  -  -  eq1

Again for surface 2

 \mu \sin(r _2) = 1. \sin( \phi)

Note that

r _1 + r _2 =  \frac{\pi}{2}  \implies r _2 =  \frac{\pi}{2}  - r _1

So

 \mu \sin( \frac{\pi}{2} - r _2) =  \sin( \phi)  \\  \\  \cos(r _1) =   \frac{1}{ \mu}  \sin( \phi)  -  -  -  - eq2

Square and add eq1 and eq2

 \sin {}^{2} (r _1) +  \cos {}^{2} (r _1)  =  \frac{ \sin {}^{2} ( \phi) }{ \mu {}^{2} }  +  {\sin {}^{2} ( \theta )  \over \mu {}^{2} } \\  \\  \sin {}^{2} ( \theta )  +  \sin {}^{2} ( \mu)  =  { \mu}^{2}

Similar questions