Math, asked by calnder, 9 months ago

what should be the value of a if the value of 2x^2+x-a equals to 5, when x=0​

Answers

Answered by prince5132
10

GIVEN :-

  • An Equation ; 2x² + x - a = 5
  • x = 0.

TO FIND :-

  • The value of a.

SOLUTION :-

➫ 2x² + x - a = 5

Now substitute the value of x = 0.

➫ 2 × (0)² + 0 - a = 5

➫ 2 × 0 + 0 - a = 5

➫ 0 + 0 - a = 5

➫ 0 - a = 5

➫ -a = 5 - 0

➫ -a = 5

a = -5

Hence the value of a is (-5).

VERIFICATION :-

➫ 2x² + x - a = 5

Now substitute the value of x = 0 and a = (-5)

➫ 2 × (0)² + 0 - (-5) = 5

➫ 2 × 0 + 0 + 5 = 5

➫ 0 + 0 + 5 = 5

➫ 5 = 5

L.H.S = R.H.S

HENCE VERIFIED ✔

Answered by Anonymous
15

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow  equation,\:2x^2+x-a

\sf\dashrightarrow x=0

\sf {\boxed{\bf{\:the\:polynomial\:is,p(x)=5}}}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE \:OF\:'a'

\large\underline\bold{SOLUTION,}

ACCORDING TO THE QUESTION,

\sf\therefore 2x^2+x-a =5

\sf\therefore x=0

\sf\implies 2(0)^2+0-a=5

\sf\implies 0+0-a=5

\sf\implies a=-5

\large{\boxed{\bf{ \star\:\: a=-5\:\: \star}}}

CHECKING THE THE EQUATION,

\sf\therefore equation\:is\: 2x^2+x-a =5

\sf\therefore a=-5

\sf\therefore x=0

\sf\implies 2(0)^2+0-(-5)=5

\sf\implies 0+0+5=5

\sf\implies 5=5

\sf\therefore L.H.S=R.H.S

HENCE,CHECKED

\large\underline\bold{THE\:VALUE\:OF\:'a'\:IS\:-5,}

__________________

Similar questions