Math, asked by hackerboy2007102, 3 days ago

what sum will become rs 4913 in 1½years if the rate of interest is 12½% compounded half yearly​

Answers

Answered by Anonymous
58

Given,

  • \text{Amount}\: (A)= ₹4913, \\

Compounded Half Yearly At,

  •  \text{Rate} \: (R) =  12 \:  \frac{1}{2} \%, \\
  •  \text{For} \:  1 \:  \frac{1}{2} \:   \text{years}. \\

 \\

To Find,

  • The Principal.

 \\

Solution,

Given that,

  • A = ₹ 4913, \\
  • R =   12 \:  \frac{1}{2} \%, \\

And,

  • T = 1 \frac{1}{2} \:  \text{years}. \\

Finding the Amount,

As we know,

  • \boxed{\text{Amount}_{(\text{Compounded Half Yearly)} }= P\bigg(1 + \frac{R}{200} \bigg)^{2T}} \\

Substituting the values and Finding the Amount,

:\longmapsto 4913 = P\bigg(1 + \frac{12 \frac{1}{2} }{200} \bigg)^{2 (1 \frac{1}{2}) } \\  \\ :\longmapsto 4913 = P \bigg(1 +  \frac{ \frac{25}{2} }{200}  \bigg)^{2 ( \frac{3}{2}) }  \\  \\ :\longmapsto 4913= P\bigg(1 +  \frac{25}{2 \times 200}  \bigg) ^{3}  \\  \\ :\longmapsto 4913 = P{ \bigg(1 +   \frac{1}{16}   \bigg) }^{3}  \\  \\ :\longmapsto 4913  =  P { \bigg( \frac{17}{16} \bigg) }^{3}  \\  \\ :\longmapsto 4913  =  P  \times  \frac{17}{16}  \times  \frac{17}{16}  \times  \frac{17}{16}  \\  \\ :\longmapsto4913 =  P \times \frac{4913}{4096}  \\  \\ :\longmapsto P = 4913 \times  \frac{4096}{4913}  \\ \\ :\longmapsto \boxed{ \text{Principal} = ₹4096} \\

Therefore,

  • The Principal is ₹4096.

 \\

Required Answer,

  • The Sum ₹4096 will becomes ₹4913 in 1 ½ Years If the Rate of interest is 12 ½ % Compounded Half Yearly.
Similar questions