Math, asked by angelinawilliam8917, 9 months ago

What sum will the C.I for 2 yrs at 4%p.a will be 5712 Rs

Answers

Answered by Anonymous
71

Given : -

  • Compound Interest ,C.I = ₹5712

  • Time,n = 2 years

  • Rate,r = 4%

To find out:-

Find the Principal,P.

Formula used:-

  • A = P ( 1 + r/100 ) ⁿ

  • Compound Interest = Amount - Principal

Solution:-

We know that,

Compound Interest = Amount - Principal

⇒ CI = A - P

⇒ 5712 = A - P

⇒ A = 5712 + P

Now,

A = P ( 1 + r/100 ) ⁿ

★ Substituting the values in the above formula,we get:

⇒ 5712 + P = P ( 1 + 4/100 ) ²

⇒ 5712 + P = P ( 1 + 1/25 ) ²

⇒ 5712 + P = P (25 + 1 / 25 )²

⇒ 5712 + P = P ( 26/25 )²

⇒ 5712 + P = P × 676/625

⇒ 5712 + P = 676P / 625

⇒ ( 5712 + P ) 625 = 676P

⇒ 5712 × 625 + 625P = 676P

⇒ 5712 × 625 = 676P - 625P

⇒ 3,570,000 = 51P

⇒ 51P = 3,570,000

⇒ P = 3,570,000/51

⇒ P = Rs. 70,000

Hence, the sum will be Rs 70,000.

Answered by Anonymous
8

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The sum will be Rs 70,000

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • Compound Interest = Rs 5712
  • Time Given = 2 years
  • Rate Given = 4% p.a

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The sum will be = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\pink{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Compound\: Interest = Amount - Principal } \\\\

\sf\underline{\red{\:\:\: Now, Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf { 5712 = Amount - Principal} \\\\

\dashrightarrow \sf { Amount = 5712 + Principal} \\

\sf\underline{\pink{\:\:\:Again,\: Formula\: Used\:Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Amount = P \bigg(1 + \frac{R}{100}\bigg)^n } \\\\

\sf\underline{\red{\:\:\:Now, Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {5712 + P = P\bigg(1+ \frac{4}{100}\bigg)^2} \\\\

\dashrightarrow \sf {5712 + P = P \bigg(1 + \frac{1}{25}\bigg)^2} \\\\

\dashrightarrow \sf {5712 + P = P\bigg(\frac{26}{25}\bigg)^2} \\\\

\dashrightarrow \sf {5712 + P = P\bigg(\frac{676}{625}\bigg) }\\\\

\dashrightarrow \sf {5712 + P = \frac{676P}{ 625} } \\\\

\dashrightarrow \sf {625P + 5712 \times 625 = 676P} \\\\

\dashrightarrow \sf {5712 \times 625 = 676P - 625P} \\\\

\dashrightarrow \sf {5712 \times 625 = 51P} \\\\

\dashrightarrow \sf {Principal = \frac{(5712 \times 625)}{51} } \\\\

\dashrightarrow \sf {Principal = 112 \times 625} \\\\

\dashrightarrow \sf {Principal = 70,000} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • The sum will be Rs 70,000.

\rule{200}{2}

Similar questions