Math, asked by koolkaran2486, 2 months ago

What the integral of 1÷(1-sinxcosx)

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \displaystyle\rm \:  \:   \:  \int \: \dfrac{dx}{1 - sinx \: cosx}

 \red{ \tt \: Divide \: numerator \: and \: denominator \: by \:  {cos}^{2}x}

\rm \: = \: \displaystyle\rm \:  \:   \:  \int \: \dfrac{ {sec}^{2}x \:  dx}{ {sec}^{2}x  - tanx}

\rm \: = \: \displaystyle\rm \:  \:   \:  \int \: \dfrac{ {sec}^{2}x \:  dx}{ 1 + {tan}^{2}x  - tanx}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \:  {sec}^{2}x = 1 +  {tan}^{2}x}}}

\rm \: = \: \displaystyle\rm \:  \:   \:  \int \: \dfrac{ {sec}^{2}x \:  dx}{ {tan}^{2}x  - tanx + 1}

Now, we use method of Substitution

 \red{\rm :\longmapsto\:Put \: tanx = y} \\  \red{\rm :\longmapsto\: {sec}^{2}x \: dx \:  = dy}

So, on substituting the values, we get

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ {y}^{2} - y + 1 }

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ {y}^{2} - y + \dfrac{1}{4}  - \dfrac{1}{4}  + 1 }

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ \bigg( {y}^{2} - y + \dfrac{1}{4} \bigg)  + 1 - \dfrac{1}{4} }

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ \bigg( {y} - \dfrac{1}{2} \bigg)^{2}   +\dfrac{4 - 1}{4} }

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ \bigg( {y} - \dfrac{1}{2} \bigg)^{2}   +\dfrac{3}{4} }

 \displaystyle\rm \:  \:  =  \:  \int \: \dfrac{dy}{ \bigg( {y} - \dfrac{1}{2} \bigg)^{2}   +  {\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2} }

 \rm \:  \:  =  \: \dfrac{1}{\dfrac{ \sqrt{3} }{2} }  {tan}^{ - 1}\bigg(\dfrac{\dfrac{y -  \dfrac{1}{2} }{ \sqrt{3} } }{2} \bigg)  + c

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \: \int \: \dfrac{dx}{ {x}^{2} +  {a}^{2}} = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a}+ c}}}

 \rm \:  \:  =  \: \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg(\dfrac{2y - 1}{ \sqrt{3} } \bigg) + c

 \rm \:  \:  =  \: \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg(\dfrac{2tanx - 1}{ \sqrt{3} } \bigg) + c

Additional Information :-

\green{\boxed{ \bf{ \:  \int \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1} \dfrac{x}{a} + c }}}

\green{\boxed{ \bf{ \:  \int \: \dfrac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } |  + c }}}

\green{\boxed{ \bf{ \:  \int \: \dfrac{dx}{ \sqrt{ {x}^{2}   +  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}   +   {a}^{2} } |  + c }}}

\green{\boxed{ \bf{ \:  \int \: \dfrac{dx}{ {x}^{2}  -  {a}^{2}}  = \dfrac{1}{2a}log\bigg(\dfrac{x - a}{x + a} \bigg)+ c  }}}

Similar questions