Math, asked by michaeloutlaw2003, 1 year ago

what transformations does the exponential g(x) have from the parent function f(x). f(x)=(1/3)^x g(x)=4(1/3)^x-5

Answers

Answered by shubh928985
2

Step-by-step explanation:

Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions, we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function \displaystyle f\left(x\right)={b}^{x}f(x)=bx without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted, reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant d to the parent function \displaystyle f\left(x\right)={b}^{x}f(x)=bx, giving us a vertical shift d units in the same direction as the sign. For example, if we begin by graphing a parent function, \displaystyle f\left(x\right)={2}^{x}f(x)=2x, we can then graph two vertical shifts alongside it, using \displaystyle d=3d=3: the upward shift, \displaystyle g\left(x\right)={2}^{x}+3g(x)=2x+3 and the downward shift, \displaystyle h\left(x\right)={2}^{x}-3h(x)=2x−3. Both vertical shifts are shown in Figure 5.

Figure 5

Observe the results of shifting \displaystyle f\left(x\right)={2}^{x}f(x)=2x vertically:

The domain, \displaystyle \left(-\infty ,\infty \right)(−∞,∞) remains unchanged.

When the function is shifted up 3 units to \displaystyle g\left(x\right)={2}^{x}+3g(x)=2x+3:

The y-intercept shifts up 3 units to \displaystyle \left(0,4\right)(0,4).

The asymptote shifts up 3 units to \displaystyle y=3y=3.

The range becomes \displaystyle \left(3,\infty \right)(3,∞).

When the function is shifted down 3 units to \displaystyle h\left(x\right)={2}^{x}-3h(x)=2x−3:

The y-intercept shifts down 3 units to \displaystyle \left(0,-2\right)(0,−2).

The asymptote also shifts down 3 units to \displaystyle y=-3y=−3.

The range becomes \displaystyle \left(-3,\infty \right)(−3,∞).

Similar questions