Math, asked by evenssarah29, 1 month ago

What type is of the set A = {2, 3} and B = {x: x is solution of x2 - 5x + 6 = 0} ?

Answers

Answered by ZaraAntisera
0

Answer:

x^2-5x+6=0\quad :\quad x=3,\:x=2

Step-by-step explanation:

x^2-5x+6=0

x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \:6}}{2\cdot \:1}

x_{1,\:2}=\frac{-\left(-5\right)\pm \:1}{2\cdot \:1}

\mathrm{Separate\:the\:solutions}

x_1=\frac{-\left(-5\right)+1}{2\cdot \:1},\:x_2=\frac{-\left(-5\right)-1}{2\cdot \:1}

\frac{-\left(-5\right)+1}{2\cdot \:1}

=\frac{5+1}{2\cdot \:1}

\mathrm{Add\:the\:numbers:}\:5+1=6

=\frac{6}{2\cdot \:1}

=\frac{6}{2}

=3

\frac{-\left(-5\right)-1}{2\cdot \:1}

=\frac{5-1}{2\cdot \:1}

=\frac{4}{2\cdot \:1}

=\frac{4}{2}

=2

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=3,\:x=2

Similar questions