Business Studies, asked by abhi25121, 11 months ago

What type os business risk is involved in the decision of taste buds ptv itd.to launch two new brands in snacks market

Answers

Answered by bhagathmanoj2905
0

Answer:

Explanation:

We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.

Answered by queensp73
0

Answer:

We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight object  like pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.

Hope it helps u

:)

Similar questions