Physics, asked by sharoonaftab, 4 months ago

What value of filter capacitor is required to produce 1% ripple factor for a full wave rectifier having load resistance of 1.5kohm? Assume rectifier produces peak output of 18v.​

Answers

Answered by ITZAYOUTUBER
1

\huge\purple{mark brainliest please}

\large{\mathbb{\purple{\boxed{\green{\underbrace{\overbrace{\red{\boxed{\red{♪HLO♪}}}}}}}}}}<br />\sf\huge\bold\red{༄❁❁❁❁❁༄ }HLO GUYS

muje corona ka vaccine mil gya he

agr kis chhai to muje contact kre. (WHO)\sf\huge\bold\purple{༄❁❁❁❁❁༄ }

name \: the \: colours \: of \: the \: rainbow \\

\huge\underline{\overline{\mid{\bold{\red{Don't..Spam-}}\mid}}}

\huge\mathtt\purple{\boxed{\underbrace\pink{\overbrace\green{ question}}}}

{\blue{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\red{??}}}}}}}}}}}}}}}}}}}}}}}}}}}}

\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}Question:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}Given:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}ToFind:−

Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}Solution:−

\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x

\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}wehaveardjacentanglesofaparallelogram=180

\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}puttingallvalues:

\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}→3x+2x=180→5x=180→x=5180→x=5180→x=36

\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}→3x→3×36→108→2x→2×36→72

\sf \large\underline{ \blue{verification }} \huge \dagverification†

\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†

Similar questions