Math, asked by samfighter23, 11 months ago


What value of x will make angles AOB and BOC a linear pair

Attachments:

Answers

Answered by AnandMPC
3

Step-by-step explanation:

AOB + BOC = 180° (linear pair)

3x+30 + 2x-20 = 180°

5x+10 = 180°

5x = 170

x = 170/5

x = 34

The two angles are

3x + 30

= 3(34) + 30

=132°

2x - 20

= 2(34)-20

=48°

Hope it helps:)

Answered by Sauron
9

\mathfrak{\large{\underline{\underline{Answer:}}}}

x is 34 and the angles are 132° and 48°.

\mathfrak{\large{\underline{\underline{Step-by-step\:explanation:}}}}

\textsf{\underline{\underline{Given :}}}

\textsf{Measure of} \angle AOB = \textsf{(3x+30)}

\textsf{Measure of} \angle BOC = \textsf{(2x-20)}

\textsf{\underline{\underline{To find :}}}

\textsf{Value of x}

\textsf{\underline{\underline{Solution :}}}

Linear pair of angles are the two angles who are when added sum up 180°.

\green{\boxed{\green{\boxed{\red{\sf{3x + 3x + (2x - 20) = 180}}}}}}

\sf{\longrightarrow} \: 3x + 30 + (2x - 20) = 180 \\  \\ \sf{\longrightarrow} \: 3x + 2x + 30 - 20 = 180 \\  \\ \sf{\longrightarrow} \: 5x + 10 = 180 \\  \\ \sf{\longrightarrow} \: 5x = 180 - 10 \\  \\ \sf{\longrightarrow} \: 5x = 170 \\  \\ \sf{\longrightarrow} \: x =  \frac{170}{5} \\  \\ \sf{\longrightarrow} \: x = 34

\rule{300}{1.5}

\textbf{\small{\underline{Value of (3x + 30)}}}

\sf{\longrightarrow} \: 3(34) + 30 \\ \sf{\longrightarrow} \: 102 + 30 \\\sf{\longrightarrow} \: 132

\textsf{Measure of} \angle AOB = \textsf{132}°

\rule{300}{1.5}

\textbf{\small{\underline{Value of (2x - 20)}}}

\sf{\longrightarrow} \: 2(34) - 20 \\ \sf{\longrightarrow} \: 68 - 20 \\ \sf{\longrightarrow} \: 48

\textsf{Measure of} \angle BOC = \textsf{48}°

\therefore x is 34 and the angles are 132° and 48°.

Similar questions