What value(s) of x will make DE || AB, in the given figure ?
AD = 8x + 9, CD = x + 3,
BE = 3x + 4, CE = x.
Attachments:
Answers
Answered by
115
ॐ ॐ
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✪✪ QUESTION ✪✪ ⎟⎟
What value(s) of x will make DE || AB, in the given figure ?
AD = 8x + 9, CD = x + 3,
BE = 3x + 4, CE = x.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✰✰ ANSWER ✰✰ ⎟⎟
Gɪᴠᴇɴ :- In ∆ABC, DE // AB
AD = 8x + 9, CD = x + 3,
BE = 3x + 4, CE = x
By Basic Proportionality theorem,
If DE // AB then we should have
CD/DA = CE/EB
∴ x + 3 / 8x + 9 = x / 3x + 4
☛ (x + 3) (3x + 4) = x (8x + 9)
☛ x (3x + 4) + 3 (3x + 4) = 8x² + 9x
☛ 3x² + 4x + 9x + 12 = 8x² + 9x
☛ 8x² + 9x - 3x² - 4x - 9x - 12 = 0
☛ 5x² - 4x - 12 = 0
☛ 5x² - 10x + 6x - 12 = 0
☛ 5x (x - 2) + 6 (x - 12) = 0
☛ (5x + 6) (x - 2) = 0
☛ 5x + 6 = 0 or x - 2 = 0
☛ x = -6/5 or x = 2
x cannot be negative.
∴ The value x = 2 will make DE//AB.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Answered by
10
Given, DE//AB
Therefore x is 2.
Similar questions
Chemistry,
5 months ago
Computer Science,
5 months ago
Social Sciences,
5 months ago
Math,
11 months ago
Math,
11 months ago
Math,
1 year ago
Biology,
1 year ago