Math, asked by rohansp346, 3 months ago

what will be the answer for this​

Attachments:

Answers

Answered by rishikeshm1912
1

Given:

9x^{2} - 9(a+b)x + (2a^{2} + 5ab +2b^{2}) = 0

To Find:

Find the value of x from the equation

9x^{2} - 9(a+b)x + (2a^{2} + 5ab +2b^{2}) = 0

Solution:

9x^{2} - 9(a+b)x + (2a^{2} + 5ab +2b^{2}) = 0

or, 9x^{2} - 9(a+b)x + [2a^{2} + (4+1)ab +2b^{2}] = 0

or, 9x^{2} - 9(a+b)x + [2a^{2} + 4ab+ab +2b^{2}] = 0

or, 9x^{2} - 9(a+b)x + [2a(a + 2b)+b(a +2b)] = 0

or, 9x^{2} - 9(a+b)x + (a + 2b)(2a+b) = 0

or, 9x^{2} - 3[(a + 2b)+(2a+b)]x + (a + 2b)(2a+b) = 0

or, 9x^{2} - 3(a + 2b)x+3(2a+b)x + (a + 2b)(2a+b) = 0

or, 3x[3x - (a + 2b)]-(2a+b)[3x - (a + 2b)] = 0

or, (3x-a- 2b)(3x-2a-b)=0

Either, (3x-a- 2b)=0

or, x=\frac{a+2b}{3}

Or, (3x-2a-b)=0

or, x=\frac{2a+b}{3}

Therefore, the values of x are \frac{a+2b}{3} and \frac{2a+b}{3}.

Similar questions