Math, asked by shashankmishra413, 9 months ago

what will be the answer of log40 base 1/20- 1)greater than one 2)smaller than one 3)greater than 0 and smaller than 1 4)None of these

Answers

Answered by mudit448799
0

Answer:

answer 3 is right....

Step-by-step explanation:

plz. make me as brainluests answer...

plz. plz. plz. plz.

Answered by ravilaccs
0

Answer:

The Correct answer is Option B

Step-by-step explanation:

Before we solve the question given above, we will first see what a logarithm function is. A logarithm is the power in which a number must be raised in order to get some other number. The logarithm is the inverse function to exponentiation. The general form of logarithm is \({\log _a}b\).Now, we are given a logarithm. We will assume that its value is x. Thus,

\(x = {\log _{\dfrac{1}{{20}}}}40{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (i)}}\)

Now, we will use an exponential property here, which says that \({a^{ - 1}} = \dfrac{1}{a}\) Thus, we get:

\(x = {\log _{{{20}^{ - 1}}}}40\)

Now, we will use a logarithm identity in the above question:

\({\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b\)

Thus, we get:

\(x=-log_{20}40x=-log_{20}(20*2)\)

Now, we will use \(\log \left( {a \times b} \right) = \log a + \log b\)in above equation. Thus, we will get:

\(x=-[log_{20}20+log_{20}2]x=-[1+log_{20}2]

Now, we will use\({\log _a}b = \dfrac{1}{{{{\log }_b}a}}\) in above question:

x=-[1+\frac{1}{log_{2}20} ]\\x=-[1+\frac{1}{1log_{2}(4*5)} ]\\x=-[1+\frac{1}{log24+log25} ]\\x=-[1+\frac{1}{ 2+log25}]..................(ii)

Now, we consider the value of\({\log _2}5\) as y. Thus,

\(y = {\log _2}5{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iii)}}\)

We use the identity: \({\log _a}b = \dfrac{{{{\log }_{10}}b}}{{{{\log }_{10}}a}}\).

Thus, we get:

y=\frac{log10_{5}}{log10_{2}} \\\\y=\frac{log_{10} \frac{10}{2}}{log_{10} 2}

Now, we will use the identity:\(\log \left( {\dfrac{a}{b}} \right) = \log a - \log b\)

y=\frac{log10_{10}-log10_{2}}{ log10_{2}}\\\\y=\frac{1-log10_{2}}{log10_{2}}

The value of \({\log _{10}}2\)is 0.3010. Thus, we have:

y=\frac{1-0.30100}{0.3010}\\\\y=\frac{0.69900}{.3010} \\\\y=2.322.................(iv)

From (iii) and (iv), we have:

\({\log _2}5 = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (v)}}\)

From (ii) and (v), we have the following equation:

x=-[1+\frac{1}{2+2.322} ]\\x=-[1+\frac{1}{4.322} ]\\x=-[1+0.231]\\x=-[1.231]\\x=-1.231...............(vi)

From (i) and (vi), we can say that:

log_\frac{1}{20}40=-1.231\\log_\frac{1}{20}40 < 0

Hence, option B is correct.

Similar questions