Math, asked by iren78, 1 month ago

What will be the area of a circle whose diameter is 1.8 m and value of π=3.14?

Answers

Answered by nithilan27
1

Answer: area =  2.5434 m²

Step-by-step explanation:

Answered by Anonymous
34

\frak{ \dag \: Given }\begin{cases} \frak{Diameter  \: of  \: a  \: circle = 1.8m} \\ \\  \\  \frak{Value  \: of \:  \pi = 3.14} \end{cases}

⠀⠀

To find: Area of circle?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Here, In this question We are asked to find the area of circle.

In order to calculate the area, Firstly we will find radius and then we will put it in "Area of circle" formula. i.e πr².

\begin{gathered}\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\\end{gathered}

⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\pink{Radius_{\;(circle)} = \dfrac{Diameter}{2}}}}}\\\end{gathered}

⠀⠀

\begin{gathered}:\implies\sf  \frac{1.8}{2} \\ \\ \\ :\implies\sf 0.9m\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{r = 0.9\:m}}}}}\;\bigstar\\ \end{gathered}

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Radius\:of\:circle\:is\: {\textsf{\textbf{0.9\:cm}}}.}}}

⠀⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Now,\:Finding\:area\:of\:circle,}}}\\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(circle)} = \pi r^2 }}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf Area_{\;(Circle)} = 3.14 \times 0.9 \times 0.9\\ \\ \\ :\implies\sf Area_{\;(Circle)} = 3.14\times 0.81\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{Area_{\;(Circle)} = 2.5434\:cm^2}}}}}\;\bigstar\\ \\\end{gathered}

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Area\:of\:circle\:is\: \bf{2.5434\:cm^2}.}}}

⠀⠀⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀

\begin{gathered}\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}

Similar questions