Math, asked by icecream346, 3 months ago

what will be the compound interest on rs.30,000 at 20%p.a compounded annually for 3years​

Answers

Answered by asahilthakur
1

Answer:

₹21,840

Step-by-step explanation:

Principal (P) = ₹30,000

Rate (R) = 20%

Time (n) = 3 years

Amount (A) = P (1 + R/100)ⁿ

=> A = 30,000 (1 + 20/100)³

=> A = 30,000 (1 + 1/5)³

=> A = 30,000 (6/5)³

=> A = ₹51840

Compound Interest = A-P = ₹51840 - ₹30000 = ₹21,840

Answered by thebrainlykapil
20

Given :-

  • Principal = Rs,30,000
  • Rate = 20%
  • Time = 3 years

 \\  \\

To Find :-

  • Compound Interest

 \\  \\

Solution :-

{:} \longrightarrow \sf{\sf{Amount \: = \: Principal \: \times \: \bigg(\:1\: + \:\dfrac{Rate}{100}\:\bigg)^{Time}}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 30000\: \times \: \bigg(\:1\: + \:\dfrac{20}{100}\:\bigg)^{3}}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 30000\: \times \: \bigg(\:\dfrac{120}{100}\:\bigg)^{3}}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 30000\: \times \: \dfrac{120}{100}\: \times \: \dfrac{120}{100}\: \times \: \dfrac{120}{100}}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 3\cancel{0000}\: \times \: \dfrac{12\cancel0}{1\cancel{00}}\: \times \: \dfrac{12\cancel0}{1\cancel{00}}\: \times \: \dfrac{120}{1\cancel{00}}}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 3 \:  \times  \: 12 \:  \times  \: 12 \:  \times 120}}\\\\ {:} \longrightarrow \sf{\sf{Amount \: = \: 36 \:  \times  \: 1440}}\\\\ {:} \longrightarrow \sf{\bf{Amount \: = \:Rs,51840}}\\\\

________________

 \\

\longmapsto\sf \: Compound \: interest \:  =  \: Amount \:  -  \: Principal \\ \\  \longmapsto\sf \: Compound \: interest \:  =  \: 51840 \:  -  \: 30000 \\ \\ \longmapsto \sf \boxed{\bf { Compound \: interest \:  =  \: Rs,21840}} \\  \\

________________

Therefore, Compound Interest is Rs,21840

________________

Similar questions