Math, asked by simermkohli, 19 days ago

What will be the difference between simple and compound interests at the rate of 10%p.a. on a sum of Rs 1000 after 2 years? (give full explanation)

Answers

Answered by PeachyMoon
2

Answer:

Answer: Principal sum = ₹1000, interest rate = 10%p.a. , time= 4yrs. Simple interest= P.R.T/100 = 1000×10×4/100 = 400. Compound interest= P{1+ R/100}™ - P =1000{1+10/1000}^4-1000 = 1464.1 - 1000 = 464.1 Thus difference in interests= 464.1 - 400 = ₹64.1

Answered by Anonymous
25

Given :

  • Principal = Rs.1000
  • Rate = 10 %
  • Time = 2 years

 \\ \\

To Find :

  • Simple Interest = ?
  • Compound Interest = ?
  • Difference = ?

 \\ \\

Solution :

Formula Used :

  •  {\underline{\boxed{\purple{\sf{ S.I = \dfrac{P \times R \times T}{100} }}}}}

  •  {\underline{\boxed{\purple{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup^n - P }}}}}

Where :

  • ➬ S.I = Simple Interest
  • ➬ C.I = Compound Interest
  • ➬ R = Rate
  • ➬ T = Time
  • ➬ n = Time

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Simple Interest :

 {:\implies{\qquad{\sf{ S.I = \dfrac{P \times R \times T}{100} }}}} \\ \\ \\ \ {:\implies{\qquad{\sf{ S.I = \dfrac{1000 \times 10 \times 2}{100} }}}} \\ \\ \\ \ {:\implies{\qquad{\sf{ S.I = \dfrac{1000 \times 20}{100} }}}} \\ \\ \\ \ {:\implies{\qquad{\sf{ S.I = \dfrac{20000}{100} }}}} \\ \\ \\ \ {:\implies{\qquad{\sf{ S.I = \cancel\dfrac{20000}{100} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pink{\pmb{\frak{ Simple \; Interest = ₹ \; 200 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Compound Interest :

 {\dashrightarrow{\qquad{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup^n - P }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \bigg\lgroup 1 + \dfrac{10}{100} \bigg\rgroup^2 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \bigg\lgroup 1 + \cancel\dfrac{10}{100} \bigg\rgroup^2 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \bigg\lgroup 1 + 0.10 \bigg\rgroup^2 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \bigg\lgroup 1.10 \bigg\rgroup^2 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \times 1.10 \times 1.10 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \times 1.21 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1000 \times 1.21 - 1000 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 1210 - 1000 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Compound \; Interest = ₹ \; 210 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Difference :

 {\longmapsto{\qquad{\sf{ Difference = Compound \; Interest - Simple \; Interst }}}} \\ \\ \\ \  {\longmapsto{\qquad{\sf{ Difference = 210 - 200 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\frak{ Difference = ₹ \; 10 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Difference between the interests is ₹ 10 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions