Math, asked by anonymous961550, 2 months ago

What will be the difference between simple interest and compound interest on sum of Rs.
6000 in 2 years at the rate of interest of 5% p.a.?
options

Rs. 15
Rs. 20
Rs. 30
Rs. 10​

Answers

Answered by creativedraw458
0

Answer:

s.i

s.i=6000×2×5/100

=600rs

amt=6000+600

=rs.6600

c.i

for 1st year

c.i=6000×1×5/100

=300rs

amt=6000+300

=6300rs

for 2nd year

p=rs.6300

c.i=6300×1×5/100

=315rs

amt=6300+315

=rs.6615

difference between c.i and s.i =6615-6600

=rs15 (Ans)

Answered by BrainlyRish
54

Given : The Principal is Rs. 6000 , Rate of Interest is 5 % p.a. & Time is 2 yrs .

Exigency To Find : Difference Between Compound Interest & Simple Interest.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Finding Simple Interest for finding the Difference :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \maltese \:\bf Formula \: for \: Simple \:Interest \: \:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ Simple \:Interest \:: \dfrac{P\times R \times T }{100} }\bigg\rgroup \\\\

⠀⠀⠀⠀Here P is the Principal , R is the Rate of Interest & T is the Time .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf  Simple \: Interest \:= \: \dfrac { 6000 \times 5 \times 2 }{100} \\

\qquad:\implies \sf  Simple \: Interest \:= \: \dfrac { \cancel {6000}\times 5 \times 2 }{\cancel {100}} \\

\qquad:\implies \sf  Simple \: Interest \:= \: 60 \times 5 \times 2  \\

\qquad:\implies \sf  Simple \: Interest \:= \: 300 \times 2  \\

\qquad:\implies \sf  Simple \: Interest \:= \: 600  \\

\qquad:\implies \frak{\underline{\purple{\:Simple \: Interest \:= \: Rs. \:600  }} }\: \;\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Simple\:Interest \:is\:\bf{Rs. \: 600 \:.}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Now , We have to find Compound Interest so for Compound Interest we have to first find the Amount,

⠀⠀⠀⠀Finding Amount :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \maltese \:\bf Formula \:for \: Amount  \: \:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ Simple \:Interest \:: \dfrac{P\times R \times T }{100} }\bigg\rgroup \\\\

⠀⠀⠀⠀Here P is the Principal , R is the Rate of Interest & is the Time .

\qquad :\implies \sf Amount = 6,000 \bigg( 1 + \dfrac{5}{100}\bigg)^2 \\

\qquad :\implies \sf Amount = 6,000 \bigg( 1 + \cancel {\dfrac{5}{100}}\bigg)^2 \\

\qquad :\implies \sf Amount = 6,000 \bigg( 1 + 0.05 \bigg)^2 \\

\qquad :\implies \sf Amount = 6,000 \bigg( 1.1025 \bigg) \\

\qquad :\implies \sf Amount = 6,000 \times  1.1025  \\

\qquad :\implies \sf Amount = 6,615  \\

\qquad :\implies \frak{\underline{\purple{\:Amount = Rs. \:6,615 }} }\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Amount \:is\:\bf{Rs. \: 6,615 \:.}}}}\\

⠀⠀⠀⠀Finding Compound interest  :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \maltese \:\bf Formula \:for \: Compound \:Interest \:\: \:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ Compound \:Interest \:: Amount - Principal }\bigg\rgroup \\\\

⠀⠀⠀⠀Here , Amount is Rs.6,615 & Principal is Rs. 6000 .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf  Compound \: Interest \:= \: 6,615 - 6,000  \\

\qquad:\implies \bf  Compound \: Interest \:= \: 615  \\

\qquad:\implies \frak{\underline{\purple{\:Compound \: Interest \:= \: Rs. \:615  }} }\: \;\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Compound \:Interest \:is\:\bf{Rs. \: 615 \:.}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Finding Difference between Compound Interest & Simple Interest  :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Difference  : \: Compound\: Interest \: - \: Simple\: Interest\:}\bigg\rgroup \\\\

⠀⠀⠀⠀Here , Compound Interest is Rs. 615 & Simple Interest is Rs. 600 .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf  Difference \:= \: 615 - 600  \\

\qquad:\implies \bf  Difference \:= \: 15  \\

\qquad :\implies \frak{\underline{\purple{\:Difference = Rs. \:15 }} }\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Difference \:between \:Compound \;Interest \:and \: Simple \:Interest \:is\:\bf{Rs. \: 15 \:.}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions