Math, asked by gs128037, 15 hours ago

What will be the ratio of the radii of the circumcircle and the in circle of a triangle whose sides are 5, 6 and 7 cm?​

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Given that, sides of a triangle are 5 cm, 6 cm and 7 cm

Let assume that sides of a triangle as

a = 5 cm

b = 6 cm

c = 7 cm

Let first evaluate the semi Perimeter (s) of the triangle.

\rm \: s = \dfrac{a + b + c}{2}

\rm \: s = \dfrac{5 + 6 + 7}{2}

\rm \: s = \dfrac{18}{2}

\rm\implies \:s = 9 \: cm

Now, we have to find area of triangle.

\rm \:  \triangle \:  =  \:  \sqrt{s(s - a)(s - b)(s - c)}

So, on substituting the values, we get

\rm \:  \triangle \:  =  \:  \sqrt{9(9 - 5)(9 - 6)(9 - 7)}

\rm \:  \triangle \:  =  \:  \sqrt{9(4)(3)(2)}

\rm\implies \:\rm \:  \triangle \:  =  \:  6 \sqrt{6}  \:  {cm}^{2}

We know,

Radius of incircle, r is given by

\boxed{\tt{  \:  \:  \: r \:  =  \:  \frac{\triangle}{s}  \:  \:  \: }} \\

So, on substituting the values, we get

\rm\implies \:r = \dfrac{6 \sqrt{6} }{9} = \dfrac{2 \sqrt{6} }{3}  \: cm

Now, we know,

Circumradius, R is given by

\boxed{\tt{  \:  \: R \:  =  \: \dfrac{abc}{4\triangle} \:  \:  \: }} \\

So, on substituting the values, we get

\rm \: R = \dfrac{5 \times 6 \times 7}{4 \times 6 \sqrt{6} }

\rm\implies \:R = \dfrac{35}{4 \sqrt{6} } \: cm

Now, Consider

\rm \: R \:   :  \: r

\rm \:  =  \: \dfrac{35}{4 \sqrt{6} }  \:  :  \: \dfrac{2 \sqrt{6} }{3}

\rm \:  =  \: 35 \:  :  \: 16

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \: \dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC}  = 2R

Now,

\rm\implies \:a = 2R \: sinA

\rm\implies \:a = 2R \: \times  \:  2 \: sin \dfrac{A}{2} \: cos \dfrac{A}{2}

\rm \: a = 4R \times  \sqrt{ \dfrac{(s - b)(s - c)}{bc} }  \times  \sqrt{ \dfrac{s(s - a)}{bc} }

\rm \: a = 4R \times  \sqrt{ \dfrac{s(s - a)(s - b)(s - c)}{bc \times bc} }

\rm\implies \:R = \dfrac{abc}{4\triangle}

Similar questions