Chemistry, asked by xyz3253, 1 year ago

What will be the uncertainty in velocity of an electron
when the uncertainty in its position is 1000 A?
3 5.79 x 102 m s-1 2) 5.79 108 m s-1
3) 5.79 x 104 m s- 4) 5.79 × 10-10 m s-1​

Answers

Answered by Anonymous
33

Solution

Uncertainty in velocity of an electron is calculated by using Heisenberg's Uncertainty Principle

From the Question,

\sf{\Delta{x} = {10}^{-7}}

We know that,

\sf{Mass \ of \ an \ electron,m = 9.1 × {10}^{-31}}

Heisenberg's Uncertainty Principle is given by,

\sf{\Delta{x} \times \Delta{p} \geqslant \frac{h}{4 \pi}}

\implies \sf{\Delta{x} \times m.\Delta{v} \geqslant \frac{h}{4 \pi}}

 \implies \: \sf{10 {}^{ - 7} \times 9.1 \times  {10}^{ - 31} \Delta{v} \geqslant  \frac{6.25 \times 10 {}^{ - 34} }{4 \times 3.14}} \\  \implies \:  \sf{\Delta{v} =  \frac{6.25 \times  {10}^{ - 34} }{4 \times 3.14 \times 9.1 \times  {10}^{ - 38} } } \\  \\  \implies \:   \boxed{\sf{\Delta{v} = 5.79 \times  {10}^{2}ms {}^{ - 1}}}

The uncertainty in velocity of the electron is 5.79×10² m/s

Answered by ShivamKashyap08
50

\huge{\underline{\underline{.........Answer.........}}}

\huge{\underline{Given:-}}

{ \triangle x = 1000 Angstrom}

{ m =9.1 \times 10^-31 kg }

{  \triangle v = (to find)}

\huge{\underline{Explanation:-}}

From Heisenberg's uncertainty principle.

\huge{\boxed{\boxed{ \triangle x \times \triangle v = \frac{h}{4\pi \: m}}}}

Substituting the values

{ \triangle v =  \frac{6.6 \times  {10}^{ - 34} }{4 \times 3.14 \times 9.1 \times  {10}^{ - 31} \times 1000 \times  {10}^{ - 10}}}

{ \triangle v = \frac{6.6 \times  {10}^{ - 34} }{4 \times 3.14 \times 9.1 \times  {10}^{ - 31 - 10 + 3}}}

solving it

{ \triangle v =  \frac{6.6 \times  {10}^{ 4} }{4 \times 3.14 \times 9.1}}

{ \triangle v = 0.05789 \times 10^4 m/s}

{ \triangle v = 5.789 \times 10^2 m/s}

\huge{\boxed{\boxed{ \triangle v = 5.789 \times 10^2 m/s}}}

So, uncertainty in its velocity is 5.789 ×10² (option --- 1).

Similar questions