Physics, asked by sahilverma143, 11 months ago

what will be the value of g at height 3200 km above the Earth's surface​

Answers

Answered by aryanphutane
4

Answer:

Assume-

     h= 3200km = 3200000m = 3.2 x10^6

     R= 6400km = 6400000m = 6.4 x 10^6

     g= 9.8m/s^2

We know that-

           g'= g[R^2/(R+h)^2]

              = 9.8(40.96 x 10^12/92.16 x 10^12)

              = 9.8 x 4/9

              = 4.355m/s^2 ~ 4.4m/s^2

Thus, value of g at a place 3200km above surface of the earth is 4.4m/s^2.

Read more on Brainly.in - https://brainly.in/question/1529772#readmore


sahilverma143: thank u bro
aryanphutane: welcome
sahilverma143: can u answer me more questions...
sahilverma143: plz check my questions..
Answered by nirman95
9

Answer:

Given:

Height = 3200 km

To find:

Value of acceleration due to gravity

Formulas used:

Let new gravity be g"

g" \:  =  \frac{g}{ {(1 +  \frac{h}{r} )}^{2} }  \\

g => gravity on Earth surface

h => height

r => radius of Earth = 6400 km

Calculation:

Putting the values as given in the question :

g" \:  =  \frac{g}{ {(1 +  \frac{3200}{6400} )}^{2} }  \\

g" \:  =  \frac{g}{ {(1 +  \frac{1}{2} )}^{2} }  \\

g" \:  =  \frac{g}{ {( \frac{3}{2}  )}^{2} }  \\

g" \:  =   \frac{4g}{9}  \\

So the final answer is

 \boxed{g" \:  =   \frac{4g}{9}}  \\

If we put g = 10 m/s² , then we get :

g" = 4.44 m/s²

Similar questions