Math, asked by dsrija43, 3 months ago

what will be the value of thera in:-
4sin^2 theta+ 8cos^2 theta=4​

Answers

Answered by MrImpeccable
11

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  4\sin^2 \theta+ 8\cos^2 \theta=4

To find:

  •  Value\:of\:\theta

Solution:

 \implies 4\sin^2 \theta+ 8\cos^2 \theta=4 \\ \implies 4(\sin^2 \theta + 2\cos^2 \theta) = 4 \\ \implies \sin^2 \theta + 2\cos^2 \theta = 1 \\ \implies \sin^2 \theta + \cos^2 \theta + \cos^2 \theta = 1 \\ \implies 1 + \cos^2 \theta = 1 \\ \implies \cos^2 \theta = 0 \\ \\ \implies \theta = \dfrac{\pi}{2}^c = 90^{\circ}. \\ \\ This\:is\:bcoz\:\cos 90^{\circ}=0. \\ \\

Formula Used:

  •  \sin^2 \theta + \cos^2 \theta = 1

Learn More:

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions