What will be the value of 'x' in Pythagorean triplet ( 14, 48, x)
*Please tell the correct answer please
Answers
Answered by
1
Answer:
•Let us assume 2 m=14 therefore m=7
Let us assume 2 m=14 therefore m=7Now m
Let us assume 2 m=14 therefore m=7Now m 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2
Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2 Hence the triplet is 14,48 and 50 Answer .
Answered by
0
Answer:
set of three positive whole numbers that perfectly satisfy the Pythagorean theorem: a^2 + b^2 = c^2.
Step-by-step explanation:
thanks Bro like me bey
Similar questions
Computer Science,
1 day ago
Math,
1 day ago
Hindi,
1 day ago
Hindi,
2 days ago
Physics,
8 months ago