Math, asked by AKSuyash, 2 days ago

What will be the value of 'x' in Pythagorean triplet ( 14, 48, x)


*Please tell the correct answer please

Answers

Answered by Kaushalsingh74883508
1

Answer:

Let us assume 2 m=14 therefore m=7

Let us assume 2 m=14 therefore m=7Now m

Let us assume 2 m=14 therefore m=7Now m 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2

Let us assume 2 m=14 therefore m=7Now m 2 +1=7 2 +1=49+1=50And m 2 −1=7 2 −1=49−1=48Test : 14 2 +48 2 =196+1304=2500=50 2 Hence the triplet is 14,48 and 50 Answer .

Answered by EgnananChakri
0

Answer:

set of three positive whole numbers that perfectly satisfy the Pythagorean theorem: a^2 + b^2 = c^2.

Step-by-step explanation:

thanks Bro like me bey

Similar questions