what will happen if we place oxyhaemoglobin blood in thr front of uv rays ?
Answers
Answer:
the sun radiates energy in a wide range of wavelengths, most of which are invisible to human eyes. The shorter the wavelength, the more energetic the radiation, and the greater the potential for harm. Ultraviolet (UV) radiation that reaches the Earth’s surface is in wavelengths between 290 and 400 nm (nanometers, or billionths of a meter). This is shorter than wavelengths of visible light, which are 400 to 700 nm.
UV radiation from the sun has always played important roles in our environment, and affects nearly all living organisms. Biological actions of many kinds have evolved to deal with it. Yet UV radiation at different wavelengths differs in its effects, and we have to live with the harmful effects as well as the helpful ones. Radiation at the longer UV wavelengths of 320-400 nm, called UV-A, plays a helpful and essential role in formation of Vitamin D by the skin, and plays a harmful role in that it causes sunburn on human skin and cataracts in our eyes. The incoming radiation at shorter wavelengths, 290-320 nm, falls within the UV-B part of the electromagnetic spectrum. (UV-B includes light with wavelengths down to 280 nm, but little to no radiation below 290 nm reaches the Earth’s surface). UV-B causes damage at the molecular level to the fundamental building block of life— deoxyribonucleic acid (DNA).
Answer:
Explanation:Ultraviolet blood irradiation (UBI) was extensively used in the 1940s and 1950s to treat many diseases including septicemia, pneumonia, tuberculosis, arthritis, asthma and even poliomyelitis. The early studies were carried out by several physicians in USA and published in the American Journal of Surgery. However with the development of antibiotics, UBI use declined and it has now been called “the cure that time forgot”. Later studies were mostly performed by Russian workers and in other Eastern countries and the modern view in Western countries is that UBI remains highly controversial.
This chapter discusses the potential of UBI as an alternative approach to current methods used to treat infections, as an immune-modulating therapy and as a method for normalizing blood parameters. No resistance of microorganisms to UV irradiation has been reported, and multi- antibiotic resistant strains are as susceptible as their wild-type counterparts. Low and mild doses of UV kill microorganisms by damaging the DNA, while any DNA damage in host cells can be rapidly repaired by DNA repair enzymes. However the use of UBI to treat septicemia cannot be solely due to UV-mediated killing of bacteria in the blood-stream, as only 5–7% of blood volume needs to be treated with UV to produce the optimum benefit. UBI may enhance the phagocytic capacity of various phagocytic cells (neutrophils and dendritic cells), inhibit lymphocytes, and oxidize blood lipids. The oxidative nature of UBI may have mechanisms in common with ozone therapy and other oxygen therapies. There may be some similarities to extracorporeal photopheresis (ECP) using psoralens and UVA irradiation. However there are differences between UBI and ECP in that UBI tends to stimulate the immune system, while ECP tends to be immunosuppressive. With the recent emergence of bacteria that are resistant to all known antibiotics, UBI should be more investigated as an alternative approach to infections, and as an immune-modulating therapy.