Math, asked by monjyotiboro, 2 months ago

What will the minimum value of
3cos(A+π/3)



I found it -3 ..Is it correct?​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

➢ Given that

\rm :\longmapsto\:3 \: cos\bigg(A + \dfrac{\pi}{3} \bigg)

We know,

\underbrace{\boxed{\sf{cos(x + y) = cosxcosy - sinxsiny}}}

So, using this identity, we get

\rm \:  =  \:  \: 3\bigg(cosA \: cos\dfrac{\pi}{3} \:  -  \: sinA \: sin\dfrac{\pi}{3}  \bigg)

\rm \:  =  \:  \: 3\bigg(cosA \: \times  \dfrac{1}{2} \:  -  \: sinA \:  \times \dfrac{ \sqrt{3} }{2}  \bigg)

\rm \:  =  \:  \: \dfrac{3}{2}cosA  - \dfrac{3 \sqrt{3} }{2}sinA

So, it means

\rm \implies\:\rm \:3cos\bigg(A + \dfrac{\pi}{3}  \bigg)   =  \:  \: \dfrac{3}{2}cosA  - \dfrac{3 \sqrt{3} }{2}sinA

Now, we know that

 \red{\rm :\longmapsto\: -\sqrt{ {x}^{2}+{y}^{2}} \leqslant xcost+ysint \leqslant\sqrt{ {x}^{2}+{y}^{2} } }

So,

It implies,

\rm :\longmapsto\:xcost \:  +  \: ysint \: has \: minimum \: value \:  -  \sqrt{ {x}^{2} +  {y}^{2}  }

Hence,

Minimum value of

\rm :\longmapsto\:  \:  \: \dfrac{3}{2}cosA  - \dfrac{3 \sqrt{3} }{2}sinA

\rm \:  =  \:  \:  -  \sqrt{ {\bigg(\dfrac{3}{2} \bigg) }^{2}  + {\bigg(\dfrac{ - 3 \sqrt{3} }{2} \bigg) }^{2} }

\rm \:  =  \:  \:  -  \sqrt{ {\bigg(\dfrac{9}{4} \bigg) }  + {\bigg(\dfrac{27}{4} \bigg) }}

\rm \:  =  \:  \:  -  \sqrt{ {\bigg(\dfrac{9 + 27}{4} \bigg) }  }

\rm \:  =  \:  \:  -  \sqrt{ {\bigg(\dfrac{36}{4} \bigg) }  }

\rm \:  =  \:  \:  -  \sqrt{9}

\rm \:  =  \:  \:  -  \: 3

Therefore,

Minimum value of

 \red{\bf :\longmapsto\:3 \: cos\bigg(A + \dfrac{\pi}{3} \bigg)  =  -  \: 3}

Additional Information :-

The value of f(x) = a sinx + b cosx + c always lies from

\rm :\longmapsto\:c -  \sqrt{ {a}^{2} +  {b}^{2}} \leqslant f(x) \leqslant c +  \sqrt{ {a}^{2}  +  {b}^{2} }

The Minimum value of f(x) = a sinx + b cosx + c is

\rm :\longmapsto\:c -  \sqrt{ {a}^{2} +  {b}^{2}}

The Maximum value of f(x) = a sinx + b cosx + c is

\rm :\longmapsto\:c  + \sqrt{ {a}^{2} +  {b}^{2}}

Similar questions