What will three roots of x ³ -1 = 0
quality answer required !!
Answers
Answered by
7
Given Equation is x^3 - 1 = 0
= > x^3 - 1^3 = 0
We know that a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Now,
= > (x - 1)(x^2 + x + 1) = 0
(1)
x - 1 = 0
x = 1.
(2)
x^2 + x + 1 = 0
On comparing with ax^2 + bx + c, we get a = 1, b = 1, c = 1.
(i)
(ii)
Therefore the required solutions are:
Hope this helps!
= > x^3 - 1^3 = 0
We know that a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Now,
= > (x - 1)(x^2 + x + 1) = 0
(1)
x - 1 = 0
x = 1.
(2)
x^2 + x + 1 = 0
On comparing with ax^2 + bx + c, we get a = 1, b = 1, c = 1.
(i)
(ii)
Therefore the required solutions are:
Hope this helps!
siddhartharao77:
Most Welcome bro!
Answered by
0
Given Equation is x^3 - 1 = 0
= > x^3 - 1^3 = 0
We know that a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Now,
= > (x - 1)(x^2 + x + 1) = 0
(1)
x - 1 = 0
x = 1.
(2)
x^2 + x + 1 = 0
On comparing with ax^2 + bx + c, we get a = 1, b = 1, c = 1.
(i)
= \ \textgreater \ x = \frac{-b + \sqrt{b^2 - 4ac} }{2a}= > x=2a−b+b2−4ac
= \ \textgreater \ \frac{-(1) + \sqrt{(1)^2 - 4 * 1 * 1} }{2(1)}= > 2(1)−(1)+(1)2−4∗1∗1
= \ \textgreater \ \frac{-1 + \sqrt{1 - 1 * 1 * 4} }{2}= > 2−1+1−1∗1∗4
= \ \textgreater \ \frac{-1 + \sqrt{3}i }{2}= > 2−1+3i
= \ \textgreater \ - \frac{1}{2} + \frac{ \sqrt{3} }{2} i= > −21+23i
(ii)
= \ \textgreater \ x = \frac{-b - \sqrt{b^2 - 4ac} }{2a}= > x=2a−b−b2−4ac
= \ \textgreater \ \frac{-(1) - \sqrt{(1)^2 - 4 * 1 * 1} }{2(1)}= > 2(1)−(1)−(1)2−4∗1∗1
= \ \textgreater \ \frac{-1 - \sqrt{3}i }{2}= > 2−1−3i
= \ \textgreater \ \frac{-1}{2}- \frac{ \sqrt{3} }{2} i= > 2−1−23i
Therefore the required solutions are:
= \ \textgreater \ x = 1, -\frac{1}{2} + \frac{ \sqrt{3} }{2} i, -\frac{1}{2} - \frac{ \sqrt{3} }{2} i= > x=1,−21+23i,−21−23i .
= > x^3 - 1^3 = 0
We know that a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Now,
= > (x - 1)(x^2 + x + 1) = 0
(1)
x - 1 = 0
x = 1.
(2)
x^2 + x + 1 = 0
On comparing with ax^2 + bx + c, we get a = 1, b = 1, c = 1.
(i)
= \ \textgreater \ x = \frac{-b + \sqrt{b^2 - 4ac} }{2a}= > x=2a−b+b2−4ac
= \ \textgreater \ \frac{-(1) + \sqrt{(1)^2 - 4 * 1 * 1} }{2(1)}= > 2(1)−(1)+(1)2−4∗1∗1
= \ \textgreater \ \frac{-1 + \sqrt{1 - 1 * 1 * 4} }{2}= > 2−1+1−1∗1∗4
= \ \textgreater \ \frac{-1 + \sqrt{3}i }{2}= > 2−1+3i
= \ \textgreater \ - \frac{1}{2} + \frac{ \sqrt{3} }{2} i= > −21+23i
(ii)
= \ \textgreater \ x = \frac{-b - \sqrt{b^2 - 4ac} }{2a}= > x=2a−b−b2−4ac
= \ \textgreater \ \frac{-(1) - \sqrt{(1)^2 - 4 * 1 * 1} }{2(1)}= > 2(1)−(1)−(1)2−4∗1∗1
= \ \textgreater \ \frac{-1 - \sqrt{3}i }{2}= > 2−1−3i
= \ \textgreater \ \frac{-1}{2}- \frac{ \sqrt{3} }{2} i= > 2−1−23i
Therefore the required solutions are:
= \ \textgreater \ x = 1, -\frac{1}{2} + \frac{ \sqrt{3} }{2} i, -\frac{1}{2} - \frac{ \sqrt{3} }{2} i= > x=1,−21+23i,−21−23i .
Similar questions
Math,
8 months ago
Science,
1 year ago
Art,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago