Physics, asked by lsrinivasaraosss, 6 months ago

what work to be done for increasing velocity of car from 20 to 50m/s of work. if the car's weight is 1000kg in

Answers

Answered by SujalSirimilla
3

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

  • Initial velocity (u) = 20ms⁻¹
  • Final velocity (v) = 50ms⁻¹.
  • Weight of car (m) = 1000 Kg.

\LARGE{\bf{\underline{\underline{TO:FIND:-}}}}

  • We need to find the work done.

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

▣ We know that work done - change in kinetic energy. In other words:

\star \boxed{\sf{\red{W=Final  \ K.E. - Initial \ K.E.}}}

\leadsto \sf{\green{W=\dfrac{1}{2}mv^2- \dfrac{1}{2} mu^2 }}

\leadsto \sf{\green{W=\dfrac{1}{2}m(v^2- u^2) }}

▣ Where:

  • W - work.
  • m - mass.
  • u - Initial velocity.
  • v - FInal velocity.

▣ Now, substitute the values.

\sf \to W=\dfrac{1}{2} \times 1000 \times (50^2 - 20^2)

\to \sf W=500 \times (2500-400)

\leadsto \sf{\blue{W=1050000 \ J}}

OR

\leadsto \sf{\blue{W=1050 \ kJ}}

Work done - 1050 kJ.

Formulas used:

\boxed{\sf{\red{K.E.=\dfrac{1}{2}\times mass \times velocity ^2 }}}

Some more formulas:-

Kinematic equations:

\boxed{\substack{\displaystyle \sf v=u+at \\\\  \displaystyle \sf s=ut+\dfrac{1}{2}gt^2 \\\\ \displaystyle \sf 2as=v^2-u^2}}

Potential energy formula:

\boxed{\sf{\red{P.E.= mass \times acceleration \ due \ to \ gravity \times height}}}

Mechanical energy formula:

\boxed{\sf{\red{M.E.=\frac{1}{2} mv^2 + mgh}}}

Answered by BrainlyThunder
2

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

  • Initial Velocity - 20ms⁻¹
  • Final Velocity - 50ms⁻¹
  • Mass - 1000 kg

\LARGE{\bf{\underline{\underline{TO\:FIND\::-}}}}

  • The work to be done to increase the velocity of the car .

\LARGE{\bf{\underline{\underline{ANSWER\::-}}}}

W = \sf\dfrac{1}{2}m\:(\:v² \:-\: u² \:)

= \sf\dfrac{1}{2}m ( 50² - 20² )

= \sf\dfrac{1}{2}m ( 2500 - 400 )

= \sf\dfrac{1}{2}m × \sf{2100}

= \sf\dfrac{1}{2}m × \sf{1000\:×\:2100}

= \sf{500\:×\:2100}

\leadsto \sf{\red{1050000\:J}}

\LARGE{\bf{\underline{\underline{CONCLUSION\::-}}}}

∴ 1050000 J is the work to be done to increase the velocity of the car .

Similar questions