What would be expansion of: (x±a)(x±b)
Answers
Answer:
this is the answer
Step-by-step explanation:
(x + a)(x + b) = x(x + b) + a (x + b)
= x2 + xb + ax + ab
= x2 + (b + a)x + ab
(x - a)(x - b) = x(x - b) - a (x - b)
= x2 - xb - ax + ab
= x2 - (b + a)x + ab
(x + a)(x - b) = x(x - b) + a (x - b)
= x2 - xb + ax - ab
= x2 + (a - b)x - ab
(x - a)(x + b) = x(x + b) - a (x + b)
= x2 + xb - ax - ab
= x2 - (a - b)x – ab
Thus, we have
(x + a)(x + b) = x2 + (b + a)x + ab
(x - a)(x - b) = x2 - (b + a)x + ab
(x + a)(x - b) = x2 + (a - b)x - ab
(x - a)(x + b) = x2 - (a - b)x – ab
(x + a)(x + b) = x2 + (Sum of constant terms)x + Product of constant terms.