Math, asked by Neerajparekh, 9 months ago

what would be its answer​

Attachments:

Answers

Answered by TechsavvyGamer
0

 (\frac{1}{x} +  \frac{1}{y}  )^3 =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  + (3 \times  \frac{1}{x}  \times  \frac{1}{y} )( \frac{1}{x}  +  \frac{1}{y} )

=>

(\frac{x + y}{xy})^3 =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  +  \frac{3}{xy} ( \frac{x + y}{xy} )

Now, we will put the values

=>

 (\frac{a}{b} )^{3} =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  +  \frac{3}{b} ( \frac{a}{b} )

=>

 (\frac{a}{b} )^{3} =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  +  \frac{3a}{ {b}^{2} }

=>

 \frac{ {a}^{3} }{ {b}^{3} }  -  \frac{3a}{ {b}^{2} }  =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }

=>

 \frac{ {a}^{3} {b}^{3}  - 3a {b}^{3}  }{ {b}^{5} }  = \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }

=>

  \frac{{b}^{3} ( {a}^{3}  - 3a)}{ {b}^{5} }  =  \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }

=>

 \frac{ {a}^{3} - 3a }{ {b}^{2} }  = \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }

=>

\frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  =   \frac{ {a}^{3}  - 3a}{ {b}^{2} }

It is very hard to write equations in BRAINLY.

 <marquee >Very Hard!!!!!!

Similar questions