Math, asked by progirl12, 1 month ago

what would be the compound interest obtained on an amount of Rs.12,000 at the rate of the 9% p.c.p.a for 3 years (rounded off to two digits after decimal​

Answers

Answered by Vespine
3

  \bullet \:  \: \textsf{ \textbf{Correct option is B  \underline \red{Rs. 3540.348}}} \:  \:  \bigstar

Given:

  • \mathrm{P}= \bf12000
  • \mathrm{R}= \bf9 \%
  • \mathrm{F}=\mathrm{n}= \bf3  \: year

To Find :-

  • compound interest

Formula :-

† \:\underline{ \boxed{ \tt{ \red{{A}={P}\left(1+\dfrac{{R}}{100}\right)^{{n}}}}}}

Solution :-

⇝ \sf{12000\left(1+\dfrac{9}{100}\right)^{3}} \\  \\⇝  \sf{12000\left(\frac{109}{100}\right)^{3}} \\  \\⇝  \sf{12000 \times \dfrac{109}{100} \times \dfrac{109}{100} \times \dfrac{109}{100}} \\  \\⇝  \underline{\boxed{\textsf{ \textbf{ \purple{{A} \: = \: 15540.348}}}}}

  \bigstar \: \textsf{ \textbf{C.I. = \: A \: - \: P}} \\  \\⇢ \sf{C.I. =15540.348-12000} \\  \\⇢ \underline{ \boxed{ \tt{ \green{C.I = Rs. 3540.348}}}}

Hence option (B) is the correct option

Similar questions