Math, asked by khosarejyoti, 2 months ago

What would be the denominator after rationalizing 7/(5√3 – 5√2)? *

1 point

19

20

25

NONE OF THESE.​

Answers

Answered by SachinGupta01
43

\underline{\underline{\sf{\maltese\:\:Given }}}

 \sf \implies  \dfrac{7}{(5 \sqrt{3} - 5 \sqrt{2})  }

\underline{\underline{\sf{\maltese\:\:To  \: find }}}

 \sf \implies  Denominator \:  after  \: rationalising = \:  ?

\underline{\underline{\sf{\maltese\:\:Solution  }}}

 \sf \implies  \dfrac{7}{(5 \sqrt{3} - 5 \sqrt{2})  }

On rationalising,

 \sf \implies  \dfrac{7}{(5 \sqrt{3} - 5 \sqrt{2})  }  \times  \dfrac{5 \sqrt{3}  + 5 \sqrt{2}}{5 \sqrt{3}  +  5 \sqrt{2}}

Combine the fractions,

 \sf \implies  \dfrac{7(5 \sqrt{3}  +  5 \sqrt{2})}{(5 \sqrt{3} - 5 \sqrt{2})(5 \sqrt{3}  +  5 \sqrt{2})  }

We know that,

 \sf \implies (a - b)(a + b) = a ^{2}  - b^{2}

So,

 \sf \implies  \dfrac{7(5 \sqrt{3}  +  5 \sqrt{2})}{(5 \sqrt{3})^{2}  - (5 \sqrt{2})^{2}   }

 \sf \implies  \dfrac{7(5 \sqrt{3}  +  5 \sqrt{2})}{75  - 50 }

 \sf \implies  \dfrac{7(5 \sqrt{3}  +  5 \sqrt{2})}{25 }

 \sf \implies  \dfrac{ \cancel{5}(7( \sqrt{3}  +  \sqrt{2}))}{ \cancel{25 }}

 \sf \implies  \dfrac{7( \sqrt{3}  +  \sqrt{2})}{ 5 }

Hence after rationalising,

 \sf \implies  \underline{ \boxed{ \sf We \:  got \: denominator \: as \:\bf 5}}  \:  \:  \bigstar

Similar questions