Math, asked by athulkar578, 6 hours ago

whats is the equation of the tangent to the curve y - 5x*2 = 0 and parallel to line 5x + y + 1 = 0​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{Equation of the curve is}

\mathsf{y=5\,x^2}

\underline{\textbf{To find:}}

\textsf{The equation of the tangent parallel to 5x+y+1=0}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;y=5x^2}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=10\,x}

\implies\textsf{Slope\;of\;tangent=10\,x}

\textsf{But the tangent is parallel to 5x+y+1=0}

\therefore\textsf{Their slopes are equal}

\implies\textsf{Slope of tangent=Slope of 5x+y+1=0}

\implies\mathsf{10x=-5}

\implies\mathsf{x=\dfrac{-5}{10}}

\implies\mathsf{x=\dfrac{-1}{2}}

\mathsf{when\;x=\dfrac{-1}{2},\;y=5\left(\dfrac{-1}{2}\right)^2}

\implies\mathsf{y=5\left(\dfrac{1}{4}\right)}

\implies\mathsf{y=\dfrac{5}{4}}

\implies\mathsf{Tangential\;point\;is\left(\dfrac{-1}{2},\dfrac{5}{4}\right)}

\textsf{The equation of the required tangent is}

\mathsf{y-y_1=m(x-x_1)}

\mathsf{y-\dfrac{5}{4}=-5\left(x+\dfrac{1}{2}\right)}

\mathsf{\dfrac{4y-5}{4}=-5\left(\dfrac{2x+1}{2}\right)}

\mathsf{\dfrac{4y-5}{2}=-5(2x+1)}

\mathsf{4y-5=-10(2x+1)}

\mathsf{4y-5=-20x-10}

\mathsf{20x+4y+5=0}

\implies\boxed{\mathsf{5x+y+\dfrac{5}{4}=0}}

Similar questions