Math, asked by sonalishinde165, 5 months ago

when -1 is multiplied by itself 99 times the product is​

Answers

Answered by mathdude500
1

Answer:

 \sf \:   \underbrace{( - 1) \times ( - 1) \times ( - 1) \times ... \times ( - 1)} =  - 1 \\ \tt \:  99 \: times \:

Step-by-step explanation:

Given expression is

\sf \:  \underbrace{( - 1) \times ( - 1) \times ( - 1) \times ... \times ( - 1)} \\ \tt \:  99 \: times

can be rewritten as

\sf \:  =  \:  \underbrace{( - 1) \times ( - 1) \times ( - 1) \times ... \times ( - 1)} \times ( - 1) \\ \tt \:  98 \: times

\sf \:  =  \:  {( - 1)}^{98}  \times ( - 1) \\

\sf \:  =  \:  {( - 1)}^{2 \times 49}  \times ( - 1) \\

\sf \:  =  \:  {( { (- 1)}^{2} )}^{49}  \times ( - 1) \\

\sf \:  =  \:  {( 1 )}^{49}  \times ( - 1) \\

\sf \:  =  \:  1  \times ( - 1) \\

\sf \:  =  \:   - 1 \\

Hence,

\implies\sf \: \sf \:   \underbrace{( - 1) \times ( - 1) \times ( - 1) \times ... \times ( - 1)} =  - 1 \\ \tt \:  99 \: times \:

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Aʙʜɪɪ69
0

Step-by-step explanation:

Hope this helps you!!!!!

Attachments:
Similar questions