Physics, asked by whosdemon1289, 4 months ago

When 2 coulomb charge flows through a conducter in 2 second , the current flowing in the conductor is

Answers

Answered by Anonymous
13

Solution :

1 Ampere current flowing in the conductor .

Step by step Explanatíon :

We have ,

Charge ,Q =2 C

Time , t = 2 sec

We have to find the current flowing in the conductor

We know that :

Current \sf\:I=\dfrac{dq}{dt}

Put the given values

\sf\:I=\dfrac{2C}{2sec}

\sf\:I=1Cs^{-1}

\sf\green{I=1A}

_________________

More About the topic :

Electric Current

The time rate of flow of charge through any cross section is called electric current.

  • Electric Current = Q/t
  • It is measured in Ampere (A)
  • If n electrons pass through a point in a conductor in time t then the current through the conductor is , I = ne/t
  • Two types of current : a) Direct current and b) Alternative current

Answered by iTzShInNy
4

 \large \bf { \underline{\underline{ \red{ \:  \:  Con} \color{orange}{cept}  \red : - }}}

  \sf\small{Here,  \: in  \: this \: concept \: we \: have \: to \: find \: the \: current \: flowing \: } \\  \sf\small { in \: the \: conductor \:or  \: Electric \: Current \: which \: is \: represented \: } \\   \sf\small {as  \: I \:  ,by \: the \: formula \: given \: below. \: Here \: the \: Electric \: charge (Q)}\: \\   \sf\small{ is \: given \: and \: Time \: taken \: is  \: given \: in  \: the \: query.}

 \\

────────────────────────────

 \\  \\

 \large \bf { \underline{\underline{ \pink{ \:  \:  Gi} \color{deeppink}{ven}  \pink : - }}}

 \small\begin{gathered}\frak{} \begin{cases} & \sf{Electric \: Charge, \: (Q) \leadsto \: \boxed{ \bf  \color{navy}{ 2  \: Charge \:  \: }}} \\ & \sf{} \\ & \sf{ Time \: taken \: ,( \: t \: )\leadsto  \boxed{ \bf {\green{2 \: Seconds}}} } \end{cases}\\ \\\end{gathered}  \\

────────────────────────────

 \\  \\

 \large \bf { \underline{\underline{ \blue{ \:  \:  To \: } \color{navy}{find}  \blue : - }}}

  •   \small\bf \:{Electric \: Current,(I)} \leadsto \boxed{ \bold ?}

 \\

────────────────────────────

 \\  \\

 \large \bf { \underline{\underline{ \pink{ \:  \:  For} \color{purple}{mula}  \red : - }}}

 \\

 \pink \bigstar \bf \boxed { \bf  \large {I}= \large \frac{Q}{ \large t} }  \purple\bigstar

 \small \sf{Where,} \:  \\ \\   \small \sf  \boxed  {\bf I }  \red\longrightarrow Electric  \: current \\  \small \sf  \boxed{ \bf Q}  \green\longrightarrow Electric \: charge \:  \\  \small \sf \boxed{ \bf t}  \red\longrightarrow \: Time  \: taken \:  \:  \:  \:  \:  \:  \:   \\

────────────────────────────

 \\

 \\

 \large \bf { \underline{\underline{ \pink{ \:  \: Sol} \color{orange}{uti} \green{on}  \red : - }}}

 \sf{By , applying \: the \: formula} \:  \leadsto \:  \pink \bigstar \bf \boxed { \bf  \large {I}= \large \frac{Q}{ \large t} }  \purple\bigstar \\  \\  \sf Putting  \: the \: values, \\  \\ \large \tt\blue➦ I =  \frac {\cancel{2 }\: charge} {\cancel{2} \: seconds}  \\  \\ \large \tt\blue➦ I= 1 \: Cs {}^{ - 1}  \\  \\ \large \tt\blue➦ I \: = 1 \: Ampere \\

────────────────────────────

 \\  \\

 \large \bf { \underline{\underline{ \green{ \:  \:  Expl} \color{deepgreen}{ore}  \:  \pink{More} \red : - }}}

  •  \bf \: \leadsto Unit  \longrightarrow\:  Amperes (A) \:  \\
  • \bf \: \leadsto  \pink{ Defination}\longrightarrow\:    \\ \\  \bf An \:  electric \:  current  \: is \:  a  \: flow  \: of \\  \bf particles \:  (electrons) \:   flowing \:  through  \\  \bf wires   \: and \:  components.  \\ \bf \purple{ It \:  is \:  the \:  rate  \: of  \: flow \:  of  \: charge.} \:  \\

  • \bf \: \leadsto Current \longrightarrow\: Rate \: of \: flow \: of \: charge\:.  \\

 \\

────────────────────────────

 \\  \\

\large \bf { \underline{\underline{More \pink{ \:  \:  For} \color{purple}{mulas}  \red : - }}}

 \\

 \purple \bigstar \bf{Voltage,(V)}=  \large \frac{E}{Q} \green  \bigstar

 \\  \\

 \purple \bigstar \bf{Resistance,(R)}=  \large \frac{V}{I} \green  \bigstar \:

 \\  \\

 \purple \bigstar \bf{Power,(P)}=   V \times I \green  \bigstar \:

 \\  \\

 \purple \bigstar \bf{Conductivity  \: ,(σ	 )}=  \large \frac{1}{P} \green  \bigstar \:

 \\  \\

────────────────────────────

Similar questions