Math, asked by premasr009, 1 month ago

when 3 is added to the denominators and 2 is subtractfrom numerator a fraction becomes 1/4 and when 6 added to numerator and denominators multiplied by 3 & become 2/ 3​

Answers

Answered by MathCracker
32

Question :-

when 3 is added to the denominator and 2 is subtract from numerator a fraction becomes 1/4 and when 6 added to numerator and denominators multiplied by 3 & become 2/ 3.

Find the fraction.

Solution :-

  • Let the numerator be x.
  • Let the denominator be y.

Now applying first condition i.e. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes 1/4.

We get,

\sf:\longmapsto{ \frac{x - 2}{y + 3}  =  \frac{1}{4} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf:\longmapsto{4(x - 2) =  1(y + 3)}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf:\longmapsto{4x - 8 = y + 3} \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{4x  - 8 - 3 = y} \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \\  \\ \sf:\longmapsto{4x - 11 = y  \:  \:  \:  \:  \:  \:  \:  \: -  - (1)}

And applying second condition i.e. when 6 is added to numerator and the denominator is multiplied by 3, it becomes 2/3.

We get,

\sf:\longmapsto{ \frac{3(x + 6)}{3y } =  \frac{2}{3}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{x + 6 = 2y \:   \: \:  \:  -  -  - (2)}

Now put value of equation 1 in equation 3

We get,

\sf: \longmapsto{x +  6 = 2(4x - 11)}  \\  \\ \sf: \longmapsto{x + 6 = 8x - 22} \:  \:  \:  \:  \\  \\ \sf: \longmapsto{8x - x = 6 + 22} \:  \:  \:  \:  \\  \\ \sf: \longmapsto{7x = 28} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf: \longmapsto{x =  \frac{28}{7} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf: \longmapsto \red{x = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now substituting the value of x in equation 1

We get-

\sf:\longmapsto{y = 4(4) - 11} \\  \\ \sf:\longmapsto{}y = 16 - 11 \:  \:  \:  \: \\  \\ \bf:\longmapsto \red{y = 5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

This implies

Required fraction :  \rm{ \frac{x}{y}  =  \frac{4}{5} } \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by sweety2904
0

Step-by-step explanation:

let denominator be b

numerator be a

3 is added to denominator = b + 3

2 is subtracted from numerator = a - 2

fraction becomes 1/4

(a - 2) / ( b + 3 ) = 1/4

4 (a - 2) = (b + 3)

4a - 8 = b + 3

4a - b = 11==============eq1

6 added to numerator = 6 + a

denominator is multiplied by 3 = 3b

fraction becomes 2/3

(6 + a)/3b = 2/3

3 (6 + a) = 2 × 3b

18 + 3a = 6b

3a - 6b = - 18

3 (a - 2b) = - 3×6

a - 2b = - 6==============eq 2

eq2 can be multiplied with 4

4 (a - 2b = - 6) ======4a - 8b= - 24 =======eq3

eq3 - eq1 ====4a - 8b - 4a + b = - 24 - 11 = 13

- 7b = -35

b = 5

from eq1 4a - (5) = 11

4a = 11 + 5

4a = 16

a = 16/4

a = 4

the fraction is 4/5

Similar questions